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Abstract

The effect of data pre-processing (no pre-processing, offset correction, de-trending, standard normal variate
transformation (SNV), SNV+de-trending, multiplicative scatter correction, first and second derivative transforma-
tion after smoothing) on the identification of ten pharmaceutical excipients is investigated. Four pattern recognition
methods are tested in the study, namely the Mahalanobis distance method, the SIMCA residual variance method, the
wavelength distance method and a method based on triangular potential functions. The performance of the 32
method combinations is evaluated on the basis of two NIR data sets. The first one, measured in 1994, is used to build
the classification models, the second, measured from 1994–1997, is used to assess the quality of the models. The best
approach for the given data sets is the wavelength distance method combined with de-trending, a simple baseline
correction method. More general recommendations for pre-processing excipient NIR data and for choosing an
appropriate classification method are given. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the pharmaceutical industry, excipients are
required to be identified prior to release for use in
the manufacture of dosage forms. This is one of
the most common applications of near-infrared
(NIR) spectroscopy combined with pattern recog-
nition methods [1–5]. The incoming material is

either scanned in its original container by means
of an optical fibre connected to the NIR spec-
trophotometer, which can be placed directly in the
warehouse, or by withdrawing samples from the
material container and performing the measure-
ment in the analytical laboratory. After acquiring
the NIR spectrum of the excipient, its identity is
determined by means of a pattern recognition
method. If an accurate classification model is
already established, this is a simple task. To de-
velop such a model, however, requires time, effort
and experience. Initially one must define the clas-
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sification goal of the application, i.e. the type of
result, which has to be provided by the pattern
recognition method. Then, an appropriate classifi-
cation method can be selected. A wide range of
classification methods is available, which requires
a careful selection and evaluation of the methods.
When working with NIR data, an important deci-
sion is whether a pre-processing method is neces-
sary. The selection of the suitable pre-processing
method is therefore another important step in the
method development. NIR spectra are subject to
large baseline shifts due to the reflectance mode in
which they are usually recorded [6–9]. This prob-
lem is especially important in the case of solid
powdered samples, which contain materials of
varying particle size distributions. By appropriate
application of suitable pre-processing methods it
is possible to minimise the contribution of physi-
cal effects to the NIR spectra.

The aim of this work is to propose a strategy
for developing a chemometrics method for identi-
fying excipient samples based on their NIR spec-
tra. As a case study, the strategy is applied to a
data set, containing ten solid powdered excipients,
which are commonly used in the pharmaceutical
industry. The classification models will be devel-
oped on the basis of a data set, which was mea-
sured in 1994. Spectra of new incoming excipient
batches obtained over the following 3 years will
then be predicted with the models, to evaluate
whether the identification system is successful.
For the method development we focus on two
subjects: (i) the selection of an appropriate pre-
processing method to correct for physical effects
and (ii) the choice of a suitable classification
technique which leads to accurate and acceptable
identification of the excipients. The goal of the
classification is to obtain the smallest possible
a-error while eliminating any b-error. An a-error
is the incorrect rejection of an object from its own
class; a b-error is the false acceptance of a foreign
object into a class. The selected method combina-
tion must discriminate sufficiently well to elimi-
nate b-errors; it should not discriminate too much
(i.e. be robust) so that samples of new batches
that have slightly different spectra are still consid-
ered as belonging to its class.

2. Theory

A strategy for developing a classification
method, consisting of data investigation, pre-pro-
cessing, applying diagnostics to reveal inhomo-
geneities in the data, data set division, feature
selection and modelling was already described in a
previous work [10]. In the present study parts of
this strategy is refined. The flow-chart in Fig. 1
explains the procedure for the steps pre-process-
ing and classification optimisation. The scheme
concerns the initial method development.

After having stated the classification goal and
obtained the NIR spectra, the raw log(1/R) data
are carefully investigated. One needs to examine,
whether the variance within a class is large and, if
so, why (using additional data and measurement
related information). For separating several
classes, it is necessary that their between-class
variance is larger than their within-class variance.
There exist a number of data pre-processing meth-
ods, which are able to reduce the within-class
variance. Suitable pre-processing methods are se-
lected, which correct for specific problems, in
order to avoid blind data transformation.
Classifiers should be selected based on the classifi-
cation problem, i.e. the type of answer, which is
expected from the pattern recognition method and
the data structure. For a simple classification
problem (e.g. ten very different classes) a univari-
ate classifier might perform satisfactorily, while
for a difficult classification problem, more power-
ful multivariate methods might be required. In the
modelling phase, all proposed pre-processing and
classification method combinations could be
tested in order to obtain acceptable classification
results.

The following theory sections describe the selec-
tion of suitable pre-processing and classification
methods for the hereby studied application and
data sets.

2.1. Pre-processing

2.1.1. Preliminary selection of the pre-processing
methods

Three issues occur in diffuse reflectance NIR
spectroscopy for solid samples: the multicollinear-
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ity among variables, light scattering and particle
size [6–9]. The multicollinearity of the variables is
typical for spectroscopic data since the data con-
sist of continuous signals. Some transformation
methods have the ability to reduce the correlation
between variables. Scattering occurs on the sur-
face of a material and depends therefore on the
physical nature of the material and the particle

size. Interaction of the incident light and the
medium occurs within the material, e.g. within the
particles of the powder. Therefore, the particle
size defines the spectral pathlength and varying
particle sizes result in a baseline shift in the spec-
tra. Additional factors influence NIR spectra, for
instance the particle size distribution, the density
of a powder and consequently the packing of the

Fig. 1. Flow-chart for pre-processing and classification method optimisation.
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material inside a measuring cup, the moisture
content of a material, the instrument itself and
temperature. Multiplicative interference of these
effects are responsible for baseline shifts, slope
changes and curvilinearity in the spectra. As a
result NIR spectra contain not only chemical, but
also physical information about the sample and
the measuring conditions, which may be irrelevant
to the problem under study. If such information is
indeed undesired for the data analysis, it is possi-
ble to pre-process the spectra, in order to extract
the more relevant chemical information. Certain
transformation techniques are able to remove
baseline shifts, slope changes and curvilinearity of
spectra, i.e. they reduce the influence of particle
size, scattering and other influencing factors.

The present study describes the identification of
ten powdered excipients. The spectra show the
above discussed powder related problems, such as
baseline shift and slope changes. A detailed dis-
cussion of the basic data set, revealing different
sources of variance, is described in [11]. As a
result the data of the individual classes contain
large within-class variances. In this application
the identification of the excipients is restricted to
chemical differences between substances. There-
fore, the spectra can be pre-processed without
loosing this information. A number of pre-pro-
cessing (signal processing) methods, which correct
for the observed problems, are selected to trans-
form the spectra. The methods and their rational
for the selection are described below. The list does
not contain explicit matrix transformation tech-
niques (such as auto-scaling, logarithmic transfor-
mation etc.). These transformations do not
correct for typically NIR related problems. Nor
are particular noise reduction methods consid-
ered, as for instance Fourier transform (FT) or
wavelets. Such methods should be regarded as
feature reduction methods, comparable to princi-
pal component analysis (PCA).

The following pre-processing methods are
selected:
1. Offset correction
2. De-trending
3. SNV transformation
4. SNV transformation+de-trending
5. Multiplicative scatter correction (MSC)

6. First derivative after smoothing
7. Second derivative after smoothing
An initial classification is performed with the orig-
inal data, in order to determine, whether any
spectral pre-processing is necessary at all. Aside
from SNV+de-trending, no other combinations
of pre-processing methods were chosen. This com-
bination is considered to be a standard approach
for solid materials and described throughout the
literature [12]. In general it is not advisable to
combine signal processing methods, unless there is
a specific reason.

2.1.2. Pre-processing methods

2.1.2.1. Offset correction. Offset correction is ap-
plied to correct for a parallel baseline shift. An
arbitrary chosen value is subtracted from each
spectrum independently. In this application the
mean absorbance of the first five variables of each
spectrum is used for the correction, in order to
obtain positive values for the whole spectrum and
a zero baseline at the beginning of the spectrum.

xij,0=xij− x̄i,1−5 (1)

where xij,0 is the transformed element, xij the
original element and x̄i,1−5 the mean absorbance
of the first five variables of each spectrum.

2.1.2.2. De-trending. De-trending is another base-
line correction method. It removes offset and
curvilinearity, which occurs in the case of pow-
dered, densely packed samples. The baseline is
modelled as a function of wavelength, with a
second-degree polynomial, and subtracted from
the spectrum.

xij,d=xij−blij (2)

where xij,d is the transformed element, xij the
original element and blij the baseline value at
wavelength j of spectrum i.

Normally, de-trending is carried out in combi-
nation with SNV transformation. If one is inter-
ested in the different shapes of the spectra,
de-trending is applied alone [12].

2.1.2.3. SNV transformation. SNV removes the
multiplicative interferences of scatter and particle
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size. To remove slope variations on individual
spectrum basis, each object is transformed inde-
pendently using the following equation:

xij,SNV= (xij− x̄i)/
'%(xij− x̄i)2

p−1
(3)

where xij,SNV is the transformed element, xij the
original element, x̄i the mean of spectrum i and p
the number of variables in the spectrum.

SNV can be combined with de-trending in or-
der to remove the curvilinearity of spectra [12].

2.1.2.4. Multiplicati6e scatter correction. Another
method compensating for different scatter and
particle sizes is MSC. Here the correction is car-
ried out based on the assumption, that all samples
have the same scatter coefficient at all NIR wave-
lengths. An ideal spectrum, usually the average
spectrum of a representative data set, is used to
estimate the scatter of the spectra. All other spec-
tra are corrected to have the same scatter level as
the selected one. Each individual spectrum is
shifted and rotated so that it fits as closely as
possible to the chosen mean spectrum. The fit for
the individual and the mean spectrum is achieved
by least squares.

xi=ai+bi x̄j+ei (4)

where xi is an individual spectrum i, x̄j the mean
spectrum of the data set, and ei the residual
spectrum, which ideally represents the chemical
information in the data. The fitted constants ai

(offset, intercept) and bi (slope) are used to correct
each value of the spectrum i.

xi,MSC= (xi−ai)/bi (5)

Since scatter and particle size are independent
of chemical information, the user normally defines
a sub-region of the spectrum, which represents
explicitly the baseline and no chemical informa-
tion. This sub-region is then used to obtain the
parameters ai and bi, which are then applied to
correct the entire spectrum [13,14]. In this applica-
tion the first 100 variables are selected as sub-re-
gion, which correspond to the spectral range of
1100–1300 nm, where only little chemical infor-
mation was found.

In pattern recognition, MSC is typically applied
to each class separately. This includes the determi-
nation of the corresponding ideal spectrum, i.e.
the mean spectrum, and the definition of the
correction terms for each class.

2.1.2.5. Deri6ati6es after smoothing. The goal of
differentiation is to remove background and to
increase spectral resolution. A constant back-
ground is removed by transforming the original
spectra into first derivative spectra, a linear back-
ground by transforming them into the second
derivative spectra. In general, the second deriva-
tive is more often used, because the data interpre-
tation is considered to be easier. This
transformation is largely historical too.

The drawback of differentiation is that it am-
plifies noise. Therefore, it is necessary to smooth
the data beforehand. The most often used
smoothing method is the one proposed by
Savitzky and Golay [15], which is a moving win-
dow averaging method. Similar to the approach
for the computation of derivatives, a window is
selected, where the data are fitted by a polynomial
of a certain degree. In this application the differ-
entiation and smoothing is carried out according
to [16]. A window width of 17 variables is
selected.

2.2. Classification

2.2.1. Preliminary selection of the classification
methods

In order to develop classification rules one uses
supervised pattern recognition techniques. One
can distinguish between discriminating and class-
modelling methods [17]. In discrimination analysis
one tries to find boundaries between given classes.
New objects are assigned to one class depending
on the classification rule. With class-modelling
techniques an individual model is established for
each given class separately, based on similarities
between the objects within this class [18]. Class
borders are defined around the samples of the
class. The model therefore consists in fact of a
hypervolume, described by the samples of the
class. This approach enables a positive identifica-
tion. A new object is assigned to the class only, if
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it falls within the hypervolume. If it falls outside,
it is considered as an outlier. For this reason
class-modelling techniques can be regarded as
outlier detection methods.

The classification of excipients requires a
method, which leads to a positive identification. A
sample should be identified as member of a class,
only if it is similar enough to the class under
investigation. Class-modelling techniques are ap-
propriate for dealing with such a situation. With
these methods the identification as well as the
quality of an excipient can be determined. For
this study we selected the following four pattern
recognition methods, which lead to a positive
identification.
1. Mahalanobis distance method (Hotelling’s T2

test)
2. SIMCA residual variance method
3. Wavelength distance method
4. Method based on triangular potential

functions
The Mahalanobis distance, SIMCA residual vari-
ance and the wavelength distance method are
commercially available. In the Mahalanobis dis-
tance and SIMCA residual variance method it is
however important to investigate, which variant is
used, because they exist in several versions. The
method based on potential functions applied here
was originally developed to study the representa-
tivity of prediction samples towards a multivariate
calibration model [19]. It is selected as a non-
parametric alternative to the three parametric
methods.

2.2.2. Classification methods

2.2.2.1. Mahalanobis distance and SIMCA residual
6ariance method. As used here, the Mahalanobis
distance method and SIMCA residual variance
method are class-modelling techniques based on
PCA [20–23]. The two methods are complemen-
tary, the Mahalanobis distance method covers the
space defined by the significant principal compo-
nents (PCs), the SIMCA residual variance method
the residual space. For each class separately a
PCA is carried out yielding a class PC model. The
model for each class, with a certain number of
significant PCs, is obtained by the following
equation:

(X−X( )=UWVT+E (6)

where (X−X( ) is the mean centred data matrix, U
the normed score matrix obtained for n objects
and r selected principal components, W a diago-
nal matrix with the singular values, VT the load-
ing matrix obtained for r selected principal
components and p variables and E the residual
matrix.

The Mahalanobis distance method, as used
here, is equivalent to the Hotelling’s T2 test,
which is known from statistical process control
[24]. In the literature there is some confusion
about this classification method, since several
variants are known, working in the original and
in the PC space [3,25–27]. The method always
involves the computation of the Mahalanobis dis-
tance, Ti

2, of an object xi to the mean spectrum
(centroid) of the class, x̄j, which is then compared
to a critical value. This critical value can be
obtained either from an F, x2 or a b distribution,
and can be found in corresponding tables or it is
defined by the user.

In the original space, the Mahalanobis distance
is defined as followed:

Ti
2= (xi− x̄j)S−1(xi− x̄j)% (7)

with

S=
1

(n−1)
%
n

i=1

(xi− x̄j)%(xi− x̄j) (8)

where x̄j is an estimate of the mean vector and S
an estimate of the variance–covariance matrix of
the class.

In the PC space the computation of the Maha-
lanobis distance is simpler, because the PCs are
orthogonal. Therefore the covariance of the vari-
ance–covariance matrix of the PC scores van-
ishes. The S then becomes a diagonal matrix.
Moreover the centroid of the class is zero for
mean centred data. Eq. (7) can therefore be sim-
plified to:

Ti
2= (n−1)uiu%i (9)

where ui is the vector of the normed scores of
object i.

In this application two critical values are
needed for the computation of the Hotelling’s T2
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test. For the training set, where the data are only
fitted, the critical value must be defined differently
compared to the test set, which is based on predic-
tion. According to [24] the critical T2 value for the
training set is obtained in the following way:

T crit
2 =

(n−1)2

n
B(a,r/2,(n−r−1)/2) (10)

where B refers to the b-distribution. This distribu-
tion is proposed for a situation, where the training
set samples are used to obtain the mean and the
variance–covariance matrix needed for the com-
putation of their Mahalanobis distances. B is the
tabulated value for the confidence level a, and for
r/2 and (n−r−1)/2 degrees of freedom.

When predicting a new object, the mean and
the variance–covariance matrix of the training
class are used to calculate its T2 value. The F-dis-
tribution is appropriate to establish the critical
value in this situation [24]. Thus, the critical value
is obtained in the following way:

T crit
2 =

r(n−1)(n+1)
n(n−r)

F(a,r,n−r) (11)

where F is the tabulated value for the confidence
level a and r and n−r degrees of freedom.

In the SIMCA residual variance method, class
boundaries are constructed around the modelled
PCs, based on the distances (Euclidean distances)
between the objects and the origin in the space of
the residual PCs.

s0=
' %

n

i=1

%
p

j=1

e ij
2

(p−r)(n−r−1)
(12)

e ij
2 is the squared residual of object i on the latent

variable j and s0 is the mean distance between all
objects belonging to the class and the class model.

An unknown object is classified by projecting it
into the PC space defined for the class. Then its
distance towards the class model (si) is computed.

si=
' %

p

j=1

e ij
2

p−r
(13)

With the help of an F-test at a given level of
confidence the obtained value si is compared to a
critical value, scrit.

scrit=
Fcrits0
2 (14)

If siBscrit the object is considered to be a member
of the class, otherwise it is regarded to be an
outlier. s0 obtained from the fitted scores of the
training class and si obtained from the predicted
scores of a new object should not be directly
compared [11,23,28]. Therefore, it was proposed
to predict all spectra of the training set first with
leave-one-out cross-validation (LOOCV) in order
to obtain the predicted scores [23]. These scores
are then used to establish the value s0.

In this work the Mahalanobis distance and the
SIMCA residual variance method are applied at
two levels of confidence, a=0.05 and 0.01.

2.2.2.2. Wa6elength distance method. The wave-
length distance method is a univariate classifica-
tion method, applied in the spectral domain [29].
Thanks to its mathematical simplicity and the
ease of interpretation of the results, it found
widespread use by practitioners of NIR-spec-
troscopy [4,27,30]. As it is a class-modelling tech-
nique, a model is established for each class
separately. To identify a new spectrum, its resid-
ual spectrum, zi, is computed by using the mean
spectrum x̄j and the standard deviation spectrum
sj of the training class under investigation.

zi= (xi− x̄j)/sj (15)

ti=zi [n/(n+1)]1/2 (16)

For each variable (wavelength) a t-test is car-
ried out at a given level of significance (a). A
spectrum is considered to belong to the class
under investigation if for all variables ti5 tmax

(tabulated) (H0,zi=0), otherwise the sample is
considered to be an outlier (H1,zi\0).

This test is correct only for one single variable.
Here multiple t-tests are carried out, one for each
variable, in order to examine whether a new sam-
ple belongs to the class. The probability of p (with
p being the number of variables) successful out-
comes, pr(p), from such multiple tests is much
lower.

For multiple comparisons it is therefore neces-
sary to increase tmax in order to achieve correct
results. Gemperline et al. enhanced the original
wavelength distance method by including para-
metric statistical tests and probability thresholds,
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which depend on the number of training samples
(n) and the number of variables (p) per spectrum
[4]. Probabilities for selected critical values for t
(tmax) taking into account different values of ob-
jects and variables, are reported. This modifica-
tion of the method is in agreement with the tmax

value of 6 which is proposed in the commercial
software for NIR spectra, where p:700. A prob-
lem of the method is that the correlation between
variables is neglected. As a consequence the class
borders are larger compared to multivariate ap-
proaches, which leads to lower a-errors, but on
the other hand to a higher risk for b-errors.
Nevertheless, it was found that the method per-
forms well in practice [4,27].

In this study the wavelength distance method is
applied using a tmax=6, as proposed in the com-
mercial software.

2.2.2.3. Method based on triangular potential func-
tions. Different methods based on potential func-
tions are known in pattern recognition [31–33].
Recently, Jouan-Rimbaud [19] studied the appli-
cability of triangular potential functions to detect
prediction outliers and inliers in multivariate cali-
bration. Since we can formulate our classification
problem as an outlier problem, the method used
in the present study is derived from this work.

In potential methods one simulates a potential
field in space around each object of a given class.
The value of such a potential field is maximum at
the location of the object and decreases with
distance from the object. The individual potentials
from the whole class can then be averaged in each
point of the considered space, leading to a global
potential for the class, which can be considered to
be a probability density function. The shape of
the individual potential fields depends on the
choice of the potential function and a smoothing
factor. In our approach triangular potential func-
tions are selected. It is a simple function, which
avoids that the user needs to evaluate critical
parameters, such as the selection of a correct
cut-off value and confidence level, needed for
instance with Gaussian functions [19]. In the case
of triangular functions the cut-off value is simply
zero. In the univariate space triangular potential
functions are defined as follows:

f(xi,xk)=0, for
)xi−xk

sm
)
\1

f(xi,xk)=1−
)xi−xk

sm
)
, for

)xi−xk

sm
)
51 (17)

where f(xi,xk) is the potential induced by object
xi on object xk of the class. The width of the
function depends on the smoothing factor sm,
which has to be optimised for each class
separately.

The global potential field f, an estimate of the
probability density, is obtained as:

f=
1
n

%
n

i=1

f(xi,xk) (18)

with n being the number of objects in the class.
In the definition of triangular potential func-

tions, applied to the multivariate space, the abso-
lute value of �xi−xk � is replaced by the Euclidean
norm of the vector xi−xk. The global potential,
creating so-called potential hypersurfaces, is then
defined:

f=
1

nsmp %
n

i=1

f(xi,xk) (19)

where p is the number of variables. In this appli-
cation the smoothing (sm) is kept constant within
one class. The optimisation of the parameter sm
for each class is a critical step. If the smoothing is
too small, local potential fields are obtained
around isolated objects or small groups of objects.
Within the class there can be still regions with a
zero potential. Therefore no continuous potential
function is obtained. On the other hand, if the
smoothing is too large, the global potential field is
becoming flat and too large on the border of the
class. Therefore, the smoothing must be chosen
carefully as a compromise between an acceptable
a- and b-error. In order to define the smoothing
parameter (sm) we work with the K nearest neigh-
bour’s distance. The median Euclidean distance of
all objects and its K neighbour is used. The me-
dian distance is chosen, because it is not influ-
enced by extreme objects. The smoothing is then
optimised by optimising K according to [19] with
the centroid method and by LOOCV. In the
centroid method pairs of objects are selected and
the potential of their centroid is determined. If
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this is non-zero for all or most possible pairs of
objects, the smoothing is considered to be ade-
quate. In the LOOCV procedure one object is left
out and the global potential induced by the other
objects of the class on the left out object is
calculated. Again if the potential is positive for
most objects the smoothing is adequate. The
smoothing is optimal for the smallest K with
positive results. The obtained model can then be
used to predict new samples. If the potential of a
new sample, projected in the space of the class
under investigation is positive, the sample is
classified to the class, if its potential is zero it is
considered to be an outlier.

3. Experimental

Two data sets, called ‘basic’ and ‘historical’
data set were investigated. Both of them contain
spectra of ten white, powdered excipients, com-
monly used in the pharmaceutical industry. They
were collected from different excipient batches,
delivered from various suppliers. In the case of
the basic data set each class contains between 15
and 22 samples, the total number of spectra in the
data set is 175. These data were collected in 1994,
over a 9-month period. This data set was already
investigated in a previous study [11]. The histori-
cal data set includes samples of new incoming
excipient batches, obtained from 1994 to 1997.
Here there are a total of 259 spectra available.
The composition of the two data sets is given in
Table 1.

The samples were also analysed by conven-
tional pharmacopoeial tests, which were all
passed. Therefore all the excipient batches were
released for production.

The spectra were measured with a NIRSystem
6500 spectrophotometer (NIRSystem, Silver
Spring, MD, USA), with the standard sample cup
(NIRSystem, Silver Spring, MD, USA). Every
spectrum, which is the average of 32 scans, was
ratioed against a Spectralon standard (99% reflec-
tive, SRS-99-010, Labsphere, North Sutton, NH,
USA). The spectra were obtained from 1100 to
2468 nm, in 2-nm steps, leading into 685 vari-
ables. The conventional system suitability tests
were performed prior to any data acquisition.

Table 1
Composition of the basic and historical data set (types of
excipients and number of samples in each lass)

Excipient Historical data setBasic data set
(1994) No. of (1994–1997) No.

of samplessamples

17 13Class 1: anhy-
drous dicalcium
phosphate

Class 2: anhy- 16 15
drous lactose

1119Class 3: explotab
22Class 4: lactose 43

Class 5: magne- 1015
sium stearate

18 24Class 6: methocel
15Class 7: povidone 5

0Class 8: sodium 17
lauryl sulphate

19Class 9: starch 43
17 95Class 10: avicel

The programs for the data analysis are written
in MATLAB code (V.4.0, Mathworks, Natick,
USA). The spectral acquisition was carried out
with NSAS (V.3.50, NIRSystems, Silver Spring,
MD, USA).

4. Results and discussion

In order to find the best identification system,
each pre-processing method is combined with
each selected pattern recognition technique. The
performance of the method combinations is evalu-
ated on the respective a- and b-errors obtained in
classification.

The basic data set is used as training set to
construct the classification models. One individual
model is built for each excipient class. This data
set is considered to be representative for the mate-
rials. It contains excipient samples from different
batches, obtained from several suppliers. As the
data were collected over some months, also in-
strument dependent sources of variance, such as
the instrument instability over time, are included.
The a-error is determined for each class. As de-
scribed in the theory, in the Mahalanobis distance
method the a-error for the training set is obtained
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using the fitted data and the adapted critical
values. In the SIMCA residual variance method
the predicted scores are used to establish the
confidence limits. For the wavelength distance
and the potential-function method, LOOCV and
the centroid method, respectively, are applied
within each class to obtain the a-errors of the
basic data set. Then all samples of the training
sets of the other classes are predicted with the
established models for determining the b-errors.
We use the historical data set, to evaluate the
performance of the classification models. Again
the a- and b-errors are determined by predicting
those data with the established pattern recogni-
tion models. The spectra of the historical data set
are obtained from new excipient batches received
within the following 3 years after the data of the
basic data set. Since they are real data, they show
realistic variations, which can be used to evaluate
the potential for correct recognition of future
samples.

In order to obtain an idea about the pattern
recognition problem, the mean spectra of the ba-
sic data set are displayed together. Fig. 2 shows
the mean spectra for the original data.

It is evident, that most of the mean spectra are
very different in shape, except for two cases. The
spectrum of magnesium stearate is similar to the
one of sodium lauryl sulphate, since both excipi-
ents are fatty acids, and the spectrum of explotab

Fig. 3. Mean spectra of the basic (—) and the historical (--)
data set for: (a) anhydrous dicalcium phosphate; (b) anhy-
drous lactose; (c) explotab; (d) lactose; (e) magnesium stearate;
(f) methocel; (g) povidone; (h) sodium lauryl sulphate; (i)
starch and (j) avicel.

Fig. 2. Mean spectra for the ten excipient classes (original
data).

resembles the one of starch, as explotab is a
modified starch.

The mean spectra obtained from the original
spectra of the basic and the historical data set for
each class are presented in Fig. 3a–j.
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The mean spectrum of the basic data set is
represented by a solid line, the one of the histori-
cal data set by a dashed line. For some classes,
anhydrous dicalcium phosphate, anhydrous lac-
tose, starch and avicel (Fig. 3a, b, i and j), there is
a baseline shift between the two mean spectra,
which increases with increasing wavelengths. For
three classes, explotab, lactose and methocel (Fig.
3c, d and f) both spectra almost overlap. There
occur several crossings of the two mean spectra,
one spectrum is somewhat flatter than the other
is. In two other cases, povidone and magnesium
stearate (Fig. 3g and e), both mean spectra also
cross, but isolated spectral bands have also
slightly different shapes, due to increased or de-
creased intensities. In the case of the last class,
sodium lauryl sulphate (Fig. 3h), there are no
spectra in the historical data set. No general trend
is found for the differences between the two data
sets. Prior to data acquisition, instrumental sys-
tem suitability tests were performed. This confi-
rms that all spectra were correctly obtained, and
hence require no preliminary standardisation to
be performed [34,35].

The first classifiers discussed here are the com-
plementary techniques, the Mahalanobis distance-
and the SIMCA residual variance method. Both
methods are based on PCA. For the construction
of the classification models the number of signifi-
cant PCs has to be determined for each class
separately. To obtain these values, we used the
method of the reduced eigenvalue, a test that was
proposed by Malinowski [36]. Between one and
nine factors were selected for the ten excipient
classes, pre-treated with the different pre-process-
ing methods. The results for the two pattern
recognition methods obtained with the basic data
set is presented in the Table 2a and b.

The class models were constructed at two levels
of significance, 95 and 99%. The overall a- and
b-errors, summarised for the ten excipient classes,
are given.

As can be seen in Table 2a for the Mahalanobis
distance method the overall a-error on the 95%
level of confidence is between 9 and 12% for all
types of pre-processing. By increasing the confi-
dence interval to 99% the overall a-error can be
reduced to around 5%. The rejection rate is some-

what too high probably due to the fact that the
data of the training sets are heterogeneous, ob-
tained from different excipient batches provided
occasionally by various suppliers. The a-error de-
creases only slightly with data pre-processing. In
general also more or less the same objects are
classified as outliers. This appears to demonstrate
that pre-processing does not have a large influence
on the a-error in the case of the Mahalanobis
distance method. The method is based on the
distribution of the data in the space of the mod-
elled PCs. The Mahalanobis distance takes the
variance–covariance structure of the data after
different types of pre-processing into account.

The situation is different for the b-error. A
b-error occurs, when spectra are wrongly
classified into a class, i.e. when classes overlap.
This happens when classes are similar and their
between-class variance is smaller than their
within-class variance. For the original data two
samples are wrongly classified at the 99% level of
confidence. Larger b-errors occur in the case of
the first and second derivative data. 13 and 17
samples, respectively, are wrongly classified at the
99% level of confidence and five and 11 samples,
respectively at the 95% level of confidence. These
misclassifications are sodium lauryl sulphate sam-
ples, which are classified as members of magne-
sium stearate, and explotab samples, which are
classified as starch samples. The spectra of the
corresponding two classes are indeed very similar,
as already explained before. However, the spectra
within one class are slightly different in shape.
This may happen, if there are several suppliers to
provide the same excipient. By the differentiation
the small spectral differences in the data (within
one class) are emphasised, and consequently the
ratio of the between-class variance/within-class
variance (between the two similar classes) is de-
creased, which leads then to the b-error. For the
other types of pre-processing there is no b-error
at both levels of confidence. Therefore, for these
other types of pre-processing, one is able to work
at the 99% significance level, where better a-errors
are obtained.

Table 2b gives the corresponding results for the
SIMCA residual variance method. It can be seen,
that the a-errors are around 5 and 3% at the
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respective levels of confidence, which is expected
at these significance levels. Pre-processing again
has no strong influence on the a-error. The results
are better than for the Mahalanobis distance
method. Almost all samples, which are rejected as
outliers here, are also outlying in the Mahalanobis
distance method. The extreme samples, classified
as outliers, represent normal variations, which can
occur for excipients. The only b-error again ap-
pears for the second derivative data.

As mentioned earlier, the Mahalanobis distance
and the SIMCA residual distance method are
complementary. Therefore, the individual results
from both methods are combined. All objects,
which are outlying in one or both methods, are

considered to be outliers, so that the full data
space is covered. The same is valid for the
wrongly classified samples, i.e. the b-errors. The
summarised results are given in Table 2c.

As we require that no b-error and the smallest
possible a-error must be obtained, we conclude
from the results in Table 2c, that the original
data, first and second derivative data cannot be
used, since b-errors occur. There are only small
differences between the five remaining pre-pro-
cessing methods.

To investigate, whether the models can cor-
rectly classify new samples, received from new
incoming excipient batches, the data of the histor-
ical data set are predicted with the models ob-

Table 2
Classification results (a- and b-errors) obtained with the Mahalanobis distance method, SIMCA residual variance method and the
combined Mahalanobis distance and SIMCA residual variance methods carried out at two significance levels for the basic data set
(175 samples)

a=0.05 a=0.01

b-Error (%) a-Error (%) b-Error (%)a-Error (%)

(a) Mahalanobis distance method
6.3Original 0.1312.6 0
5.7Offset 012.0 0

04.60De-trending 9.7
SNV 0 5.1 09.1
SNV+de-trending 05.709.7

5.10 012.0MSC
0.3210.9 5.7 0.83First derivative

11.4 0.70Second derivative 5.1 1.08

(b) SIMCA residual 6ariance method
5.1 0Original 4.0 0
4.0 0Offset 2.30
5.1 0De-trending 2.3 0

SNV 4.0 0 3.4 0
SNV+de-trending 2.94.0 00

3.4 0MSC 2.3 0
04.0First derivative 04.6

0 2.3Second derivative 0.134.6

(c) Combined Mahalanobis distance and SIMCA residual 6ariance methods
0.136.3Original 013.1

Offset 0 012.0 5.7
10.9 0De-trending 4.6 0

SNV 05.709.7
5.70 010.3SNV+de-trending

MSC 012.0 0 5.1
First derivative 0.8311.4 0.32 5.7
Second derivative 5.712.6 1.210.70
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Table 3
Classification results (a- and b-errors) obtained with the Mahalanobis distance method, the SIMCA residual variance method and
the combined Mahalanobis distance and SIMCA residual variance methods carried out at two significance levels for the historical
data set (259 samples)

a=0.01a=0.05

b-Error (%) a-Error (%)a-Error (%) b-Error (%)

(a) Mahalanobis distance method
Original 0.0444.8 27.8 0.04
Offset 049.4 36.7 0

0 18.929.0 0De-trending
0 28.2SNV 047.5
0 34.848.7 0SNV+de-trending

51.7MSC 0 31.3 0
37.8First derivative 0 25.5 0.09

0.21 12.422.8 0.26Second derivative

(b) SIMCA residual 6ariance method
0 52.954.8 0Original

58.7Offset 0 55.6 0
59.5De-trending 0 54.4 0

0 47.953.7 0SNV
0SNV+de-trending 55.264.1 0
0 49.855.6 0MSC
0 49.4 0First derivative 57.5
0 33.6 0.4745.2Second derivative

(c) Combined Mahalanobis distance and SIMCA residual 6ariance methods
0.04 56.4 0.04Original 60.6
0 59.164.1 0Offset

64.1De-trending 0 57.1 0
60.6SNV 0 50.6 0

0 61.070.3 0SNV+de-trending
MSC 064.5 54.8 0

0 50.660.6 0First derivative
47.1Second derivative 0.21 34.0 0.73

tained for the basic data set. The results are given
in the Table 3a and b, and in Table 3c for the
combined methods.

High a-errors are obtained for both methods.
The a-errors are mainly due to four classes, where
many objects are rejected as outliers. They are
anhydrous dicalcium phosphate, magnesium
stearate, starch and avicel (class 1, 5, 9 and 10).
For those classes the basic data set is not repre-
sentative for most of the new samples. Fig. 4
shows the PC1 versus PC2 score plot of the SNV
transformed avicel data (class 10).

The PC space is defined by the training set
samples, the scores of which are represented by
stars. The objects of the historical data set are

projected into the established PC space and their
scores are characterised by points. Most of the
predicted samples are clearly lying outside the
space spanned by the training set samples, and are
therefore rejected as outliers by the classification
model. A pattern recognition method can only
recognise samples for which it was trained. There-
fore the training set plays a central role in any
identification system. In the case of the other six
excipient classes (class 2, 3, 4, 6, 7, 8), the basic
data set is more representative for the historical
data set, and as a result most of the data are
correctly classified. When a classification model is
not able to identify further samples of the class,
because the training set is not representative,
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model updating is required. Model updating con-
sists of incorporating new sources of variance,
which occur in practice, in the classification model
in order to make it more robust. Fewer objects
are rejected with the Mahalanobis distance
method compared to the SIMCA residual vari-
ance method. The class volume, defined during
the modelling stage, is considerably large in the
case of the Mahalanobis distance method. For the
SIMCA residual variance method very tight class
borders are obtained. It is interesting, that with
the second derivative data a smaller a-error is
achieved for both methods. This is again an indi-
cation that for this type of pre-processing the
within-class variance is enlarged, as described be-
fore. The class-volumes are then becoming large
also, and consequently smaller a-errors occur, but
also b-errors. From Table 3c, which shows the
combined results from the Mahalanobis distance
and the SIMCA residual variance method, it can
be seen, that the final classification results are
unsatisfactory, since the results are summarised
for the ten classes. For most types of pre-process-
ing no b-error occurs at both levels of signifi-
cance, but a-errors up to 61.0% are found. SNV
seems to be the ‘best’ pre-processing method, at
the 99% level of confidence the a-error is 50.6%.
These summarised results are not acceptable in an
industrial context.

Table 4
Classification results (a- and b-errors) obtained with the wave-
length distance method (samples) and carried out with tmax=6
for the basic (175 samples) and the historical (259 samples)
data sets

b-Error (%)Tmax=6 a-Error
(%)

(a) Basic data set
32.00.6Original

2.10Offset 1.1
2.3De-trending 0

01.7SNV
1.1SNV+de-trending 0

MSC 01.7
2.3First derivative 0

Second derivative 2.9 0

(b) Historical data set
Original 0 29.34

6.6Offset 4.59
6.2De-trending 0

SNV 19.3 0
21.2SNV+de-trending 0

7.0 0MSC
07.3First derivative

28.6Second derivative 0

The wavelength distance method is a simple
univariate classification method. The basic statis-
tical test in this method is the t-test. As explained
in the theory section multiple t-tests are necessary
for testing NIR spectra, one for each variable,
and therefore the critical t-value has to be in-
creased in order to maintain the overall a-error.
As shown in [4] a tmax value of 6, for n=15 and
p=700, leads to good results. This critical value
for t is also proposed by the commercial software.
Therefore we constructed the classification models
with a tmax value of 6. The results are included in
Table 4a.

It can be seen, that the overall a-errors are
satisfactorily small for all types of pre-processing.
However, large b-errors occurred for the original
and offset data, which means that these method
combinations are not acceptable. Concerning the
remaining method combinations it looks indeed
reasonable to apply the wavelength distance
method with a tmax=6. The method performance
is again tested with the historical data set. The
results are given in Table 4b.

Fig. 4. PC1 versus PC2 scores plot for the SNV pre-treated
Avicel data with the training set data (!) and the predicted
test set data (	).
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As was to be expected b-errors occur again for
the original and offset corrected data. Concerning
the a-errors, one observes two groups of results.
For de-trending, MSC and first derivative, recog-
nition rates up to 93% are achieved. These pre-
processing methods correct especially for the
baseline. This is also true for MSC as applied
here, where the correction parameters are defined
by the first 200 nm of the spectra. This spectral
band contains mostly baseline information. Due
to the small spectral corrections, the standard
deviations for the spectra at most variables are
still rather large and so are the class volumes.
Therefore, good recognition rates are obtained in
the prediction of new samples. For SNV, SNV
combined with de-trending and second derivative
the results are less good, recognition rates around
70–80% are obtained. The reason in the case of
SNV is the following. SNV reduces the original
variance, which is due to particle size and scatter-
ing. The remaining variance is spread over the
entire spectrum. As a result the standard devia-
tion for most variables is small and tighter class
volumes are obtained. Possible problems, which
are connected to SNV, are described in [37]. In
the case of the second derivative data the spectra
cross each other many times due to the differenti-
ation. At the location of the crossing the standard
deviation is becoming very small, which is then
problematic in the wavelength distance method,
and is responsible for the large a-error. Simple
baseline correction methods, such as de-trending
or first derivative, combined with the wavelength
distance method lead to acceptable results for this
data set, namely to correct identification of
around 93% of the excipient samples.

Classification methods based on potential func-
tions have been used in the field of pattern recog-
nition, but they were not yet applied in the
present application. In potential functions the
most important step in the training phase is to
find a suitable smoothing parameter. In order to
optimise it, a compromise between an acceptable
a- and b-error is often necessary. We require, that
no b-error occurs. This means, that one can
theoretically increase the smoothing as long as
this obligation is fulfilled. Two methods are ap-
plied to define the smoothing factor, the centroid

method and LOOCV. The smoothing factor is
determined for each class separately during mod-
elling. It is optimised by determining the a-errors
obtained with the triangular potential function
method performed with a stepwise increased K
nearest neighbour distance. The smoothing is con-
sidered to be appropriate if the a-error is accept-
ably small and no b-error occurs.

For the centroid method, where in total 1464
centroids are possible for the ten classes, a
smoothing from 2 to 17 nearest neighbours me-
dian distance was found optimal for the individ-
ual classes. Generally smaller smoothing factors
are determined by LOOCV. There a value be-
tween 2 and 11 is usually optimal, except for one
case (class 9, second derivative data) where a
K=15 is needed. The results, obtained with the
corresponding smoothing factors for the basic
data set are presented in Table 5a.

The table shows the a- and b-errors obtained
for the centroid method and by LOOCV. As the
smoothing parameter was optimised such that no
wrong acceptance of samples would occur, the
b-error is zero. The a-error in the centroid
method varies from 0 to 6.3% and represents the
amount of centroids, which have a zero potential
for the given smoothing factor and are therefore
outlying. It is evident that better validation results
are obtained when models are established with
large smoothing parameters. However, a high
smoothing factor leads to a flat global potential
field and to large positive zones on the border of
the class. This situation can be dangerous for
possible b-errors when predicting new samples. A
small smoothing on the other hand can create
local potential fields around isolated objects or
groups of objects within single classes, leading to
possible a-errors in the prediction step. With
LOOCV a-errors between 2.9 and 8.0% are ob-
tained. The small a-errors for the derivative data
are due to the large smoothing factor for class 9.

Data pre-processing mainly influences the selec-
tion of the smoothing parameter. For homoge-
neous data smaller K-values are found optimal
compared to heterogeneous data. Consequently, if
spectral pre-processing removes data inhomo-
geneities (e.g. originating from different particle
sizes of the powders within a class), smaller
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smoothing parameters are found optimal after
data transformation. The data of the historical
data set are analysed. The a- and b-errors are
presented in Table 5b.

No b-errors are observed, even with large
smoothing factors. The individual a-errors for the
different types of pre-processed data vary between
15.4 and 42.5% for the centroid methods, and
between 25.1 and 45.6% for LOOCV. For both
methods the best results are achieved with offset
correction, the worst results with SNV+de-trend-
ing. As it was to be expected, the prediction
results depend on the smoothing parameter. For
offset correction rather large smoothing factors
were necessary to obtain acceptable results for the
training set. In the case of SNV+de-trending
small smoothing factors are defined during mod-
elling. The classification results are not very satis-
fying. The reason for that is again the data itself:
as explained before, the training sets of several
classes are not representative for the prediction of
the new excipient samples. Based on the results
presented in Table 5b, we conclude that the best
approach for the potential function method in this

application is to work with offset correction and
to use the smoothing factors defined by the cen-
troid method. For this combination an a-error of
6.3% is obtained for the training set, and of 15.4%
for the prediction of the historical data set.

It is shown that the influence of data pre-pro-
cessing depends on the data and the pattern
recognition method. The important feature of pre-
processing is found in reducing possible b-errors.
Transforming NIR spectra mostly decreases the
within-class variance, so that possible b-errors
might be eliminated. An exception to that was
found in the case of using derivatives. This data
transformation emphasis small spectral differ-
ences. This effect is often desired, but it appeared
here to be problematic, since the spectra within
certain classes were slightly different in shape,
which can happen in practice if excipient samples
from different batches are measured. Therefore
this pre-processing method should be applied with
special care. In this study de-trending, SNV and
MSC never lead to any b-error with any pattern
recognition method, i.e. the classes are always
well separated. This situation is particularly fa-

Table 5
Classification results (a- and b-errors) obtained with the triangular potential function approach carried out with the centroid
method and with LOOCV for the basic data set (175 samples) and the historical data set (259 samples)

Centroid LOOCV

a-Error (%) b-Error (%) a-Error (%) b-Error (%)

(a) Basic data set
5.9Original 0 8.0 0

06.3Offset 5.70
5.1 0De-trending 2.9 0

01.4 5.1 0SNV
00 4.0 0SNV+de-trending

04.60MSC 0.4
First derivative 2.93.0 00

4.2 0Second derivative 2.9 0

(b) Historical data set
21.6 0Original 42.5 0

Offset 0 25.1 015.4
25.9 0De-trending 38.2 0

SNV 42.1 0 45.2 0
42.5 0SNV+de-trending 45.60

038.20MSC 21.2
28.6 0 36.7 0First derivative
23.6 0 28.6 0Second derivative



A. Candolfi et al. / J. Pharm. Biomed. Anal. 21 (1999) 115–132 131

vourable for including further excipient classes in
the system at a later time. Data pre-processing
does not influence the a-error obtained for the
training set in the case of the Mahalanobis dis-
tance and the SIMCA residual variance method.
The wavelength distance method is sensitive to
small standard deviations for some individual
variables. Therefore for this method, pre-process-
ing may influence the a-error, namely, if the SD
for certain wavelengths are very small after the
transformation (e.g. multiple spectra-crossing in
the case of the second derivative data). In the
potential function method the data pre-processing
influences the choice of the smoothing factor.

From the four investigated classifiers, the wave-
length distance method performed best for the
studied excipient data. Thanks to its univariate
character large class volumes are constructed (ne-
glecting the correlation between variables) and
most test set samples are correctly identified. It is
clear, that this pattern recognition approach is
only successful for situations, where the excipient
classes are very different and proper data pre-
treatment is applied in order to optimise the ratio
of the between-class variance over the within-class
variance. The Mahalanobis distance and SIMCA
residual variance method are complementary
methods and should be used together. The results
obtained for the historical data set with these
multivariate methods appear to be unacceptable.
This is partly due to the parametric way the class
borders are determined. A version of SIMCA,
based on robust statistics, might possibly improve
the results. However, even more important is the
fact, that the data of the training sets for four
classes are not representative for the future sam-
ples to be analysed. This situation may occur, if
excipient suppliers subtly change the manufactur-
ing process of a certain material. The multivariate
approach based on potential functions suffers
from the same data problem. The results are
however better compared to the SIMCA method.
This can be explained by the non-parametric char-
acteristic of the method, and by the larger flexibil-
ity of the method, i.e. the possibility of choosing
large smoothing values (as long as the b-error
remains zero).

More than 93% of the samples from the histor-
ical data set are correctly classified with the wave-
length distance method applied to de-trending,
MSC and first derivative data. This means that
93% of the time-consuming conventional pharma-
copoeial identification methods can be replaced
by fast NIR identification. Moreover no b-error
occurred. From the point of view of application
MSC is more complex compared to the other
transformations. This transformation method de-
pends of a defined ideal spectrum (here the mean
spectrum) of the training set. De-trending and
first derivative are similar methods. Between these
two, de-trending can be preferred, since the shape
of the spectra remains unchanged.

5. Conclusions

It was shown, that transforming excipient NIR
spectra obtained from powdered materials with an
appropriate pre-processing method is generally
advised. Possible b-errors can be eliminated. Con-
cerning pre-processing, we suggest applying SNV
first. It may happen, that using this data transfor-
mation not the best a-error is obtained (as it is
the case here with the wavelength distance
method), but the within-class variance due to
particle size effects is considerably reduced,
thereby avoiding b-errors. Other methods, which
are sometimes useful, are: MSC and de-trending.
As described, special care should be taken, when
working with derivatives.

Concerning the pattern recognition method, we
propose to perform a first trial with the wave-
length distance method. This method is indeed
successful in the case of an easy data set, i.e. for a
classification situation consisting of a few classes
only (here ten classes), where the between-class
variance is larger than the within-class variance
for all variables. However, it is not evident that
this method will be always best. When the number
of substances studied and the number of batches
for each substance grows, it may be that better
discriminating power will be required and that
methods such as potential function methods or a
robust variant of SIMCA will be the better solu-
tion. In that case, for the studied data set, model
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updating procedures will be needed, such as in-
cluding new incoming samples, which could not
be correctly classified, into the training set of the
class to which they belong, and building a new
model. This subject is now under study.
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